5.4 Medians $\sum_{i} A l$ titudes

P is the concurrency of the medians. A.k.A. the Centroid
$\overline{A B}$ is called the median.
$(B$ is midpoint \vdots it connects with the vertex

$$
\begin{gathered}
A P=2 B P \quad \text { or } \frac{1}{2} A P=B P \\
A P=\frac{2}{3} A B \quad \ldots P \text { is } \frac{2}{3} \text { the distance } \\
\text { If } A B=12, A P=? \text { of } A B=? \\
\frac{2}{3} \cdot \frac{12}{1}=\frac{24}{3}=8
\end{gathered}
$$

Altitude - A.k.A. height. From vertex to the opposite side ! forms a right angle (perpendicular)

altitude is Outside of the
Triangle

Altitude Concurrency

They all meet at a point called the orthocenter

5.4 Medians | Altitudes

FINDING LENGTHS G is the centroid of $\triangle A B C$, $B G=6, A F=12$, and $A E=15$. Find the length of the segment.
3. $\overline{F C}$
4. $\overline{B F}$
5. $\overline{A G}$
6. $\overline{G E}$

Homework

7. \star MULTIPLE CHOICE In the diagram, M is the centroid of $\triangle A C T, C M=36, M Q=30$, and $T S=56$. What is $A M$?
(A) 15
(B) 30
(C) 36
(D) 60

IDENTIFYING SEGMENTS Is $\overline{B D}$ a perpendicular bisector of $\triangle A B C$? Is $\overline{B D}$ a median? an altitude?

14.

15.

REASONING Use the diagram shown and the given information to decide whether $\overline{Y W}$ is a perpendicular bisector, an angle bisector, a median, or an altitude of $\triangle X Y Z$. There may be more than one right answer.
17. $\overline{Y W} \perp \overline{X Z}$
18. $\angle X Y W \cong \angle Z Y W$
19. $\overline{X W} \cong \overline{Z W}$
20. $\overline{Y W} \perp \overline{X Z}$ and $\overline{X W} \cong \overline{Z W}$
22. $\overline{Y W} \perp \overline{X Z}$ and $\overline{X Y} \cong \overline{Z Y}$

